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Surface morphology, hopping, and current in a conserved growth model
with a restricted solid-on-solid condition
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A conserved growth model with a restricted solid-on-sdRISOS condition is described. A randomly
dropped particle is allowed to hop to the nearest site satisfying the RSOS condition. The values of the dynamic
exponents in the conserved growth model are consistent with those of the nonlinear equation
ohlgt=—vV*h+AV2(Vh)2+ 5, where 5 is a random noise. The surface current measurement shows the
absence of the Edwards-Wilkinson-type diffusion term. The surfaces in the steady-state regime have a grooved
phase characterized by the roughness expoaent. The physical origin of the conserved nonlinear term is
also discussedS1063-651X97)15903-7

PACS numbdis): 05.40:+j; 82.20.Mj

I. INTRODUCTION major issues in the studies is to find the universality class of
various atomistic growtior MBE) processes. It has been
There have been considerable efforts in the study of varisuggested8,9] that some atomistic models for MBE growth
ous growth model§1]. Since the surface structures of many may belong to the conserved KPZ universality clg&8,186,
growth processes are self-affine, most studies have concewhich is different from the KPZ claddl]. Even though there
trated on the surface widttW, which is defined as the root are some recent experimental evidended supporting this
mean square fluctuation of the surface height. In a finite sysslaim, the issue is still quite controversial. It would, there-
tem of lateral size_, the widthW starting from a flat sub- fore, be helpful if one can construct alternate models which

strate scales g4] belong to the conserved KPZ class. The so-called “con-
served growth models” have the distinguished feature that

W(t)~LeF(t/L?) the dropped_ particle is allowed to hop _along the surfage with-

out desorption. So far, there is no firm understanding be-

~t8, t<lL? (1) tween discrete growth models and a nonlinear conserved

continuum equatiof7,8,13.

Here, we study a conserved growth model with the RSOS
condition[15] in detail. We find that our model follows a
where the scaling functiof(x) is xB for x<1 and constant nonlinear MBE growth equation of Lai and Das Sarfiia
for x>1. The exponentg3 and z are connected with the and Villain [10],
relationz= a/ 8. Among them, the class of models known as
solid-on-solid(SOS models have been extensively studied dh(x,t) 4 ) )
as simple models of both equilibrium and nonequilibrium = vaV hG)FAVE(Vh) T+ p(x. 1), (D)
properties of surfaces. The characteristic feature of SOS
models is the restriction of fluctuations to exclude overhangsvhere h(x,t) is the height of the film and; is a noncon-
and lattice vacancies. An important variation among the SOServedGaussian random noise satisfying
models is the restricted SORSOS model, in which the
differences between neighboring heights of the local col- (p(x,)p(x",t"))=2D8(x—x")8(t—t"). (3)
umns|éh| are usually restricted to zero or unity in magni-
tude. Even with this restriction, the equilibrium RSOS modelThe one-loop renormalization grodRG) calculation[7] for
still exhibits a roughening transition at three dimensif@ls Eq. (2) gives a=(5—-d)/3 and z=(7+d)/3, i.e,,
The nonequilibrium growth model with the RSOS condition 8=(5—d)/(7+d). Ind=1+1, B=1/3 is the same as the
[3] is also well described by the Kardar-Parisi-ZhdKéZ)  value of KPZ exponent, butz=3 is different from
equation[4—6]. Zxpz=3/2. Sun, Guo, and Granil6] studied Eq.(2) with

Recently, there have been some studies in “conservedonserved noisey one-loop RG calculation and found dif-
growth models” [7-16] to find the possible relevance of ferent valuesB=1/11 andz=11/3 ind=1+1. Raczet al.
these models to the real molecular beam epitafiéBE) [17] studied various atomistic models witonserved noise
growth. In these models the number of particles is conservednd related some of their discrete models to Ez).with
after being deposited, whereas the number of particles is n@onserved noiséThere have been some physical explanation
conserved in the simple RSOS growth mof3l One of the  for the nonlinear ternj10].

To claim that our conserved model follows E@) ex-
actly, we investigate the scaling propefiyr the values of
*Electronic address: ykim@nms.kyunghee.ac.kr the exponents the hopping distance of particles along the

~L%  t>L7
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surface, the surface current, and the morphology of the sur-
face in the steady-state regime. Our study is done mainly in
d=1+1. The outline of this paper is as follows. In Sec. Il

our model is described in detail, and the scaling properties of
the surface width in the model are given. Then the hopping
distances of particles along the surface are discussed in Sec.
lll. Section IV contains the tilt-dependent surface current
measurements. In Sec.V, the morphologies of the steady-
state surfaces are studied. Finally in Sec. VI, discussions and =

s

conclusions are given. £

Il. UNIVERSALITY CLASS
OF THE CONSERVED RSOS MODEL

We now describe a conserved growth model with the
RSOS condition. The growth algorithm of the model is very
similar to the simple RSOS growth modé] except no de-

sorption. The growth rule is followindi) A sitex is selected
randomly on ¢I—1)-dimensional substratdii) If the re-
stricted solid on solid conditioRSOSQ on the neighboring
heights|sh|=0,1,. .. ,N is obeyed after a particle is depos-
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ited atx, whereN is a preassigned restriction parameter, therP?®"N=1 and 2 (=10 000 andd=1-+1).

a growth is permitted by increasing the height
h()?)ah()?)ﬂ (iii ) If the RSOSC is not obeyed at the po-

£=0.32+0.01 (d=1+1).

FIG. 1. Surface widtiW as a function of time in log-log plot for

4

sition x, the dropped particle is allowed to hop to the nearesiys shown in Fig. 1 the value g8 remains the same within
site tox where the RSOSC is satisfied. If there are more thanhe error for bothN=1 and 2. For the roughness exponent

one neighboring site at the same distance fromhich sat-

a describing the saturation of the interface fluctuation, we

isfies the RSOS condition, one of them is chosen randomlyse the relationW(t)~L* for the system sizel in the

with equal probability.

steady-state regimé>L% We have used system sizes

In the simple RSOS growth moddB], a site on a L=64,90, 128, 180, and 256. From the data shown in Fig. 2,
d—1-dimensional substrate is randomly selected, and thee obtain

growth is permitted on the selected site provided the nearest
neighbor height difference is not larger than the restriction
parameteN. If the RSOSC is not satisfied, then the dropped

a=0.95£0.04 (d=1+1).

©)

particle is rejected. However, our model allows the droppedrhe value ofa also remains the same within the error for
particle to hop to the nearest site where the RSOSC is satiboth N=1 and 2. Through the relatior= o/ 8, we obtain

fied. So our model is rejection free, and our model faithfully
produces a RSOS model with the constraint of conserved
particle growth. To find a site satisfying RSOSC, the
dropped particle can hop both up and down directions along
the surface. The simple RSOS growth mofg] allows a
desorption of the dropped particles, and produces the KPZ
nonlinear term[4]. In our conserved model, since the
dropped particle is allowed to hop both in the up and down
directions, there is no surface diffusion term of Edwards and
Wilkinson model[18]. (In Sec. IV we show it by measuring
the tilt-dependent surface curreninstead, there may be a
conserved nonlinear term due to the RSOS restriction.

The universality class of a growth model is determined by
the values of the dynamic exponentsand 8 (or z). Our
simulations are performed id=1+1 from a flat substrate
with periodic boundary conditions. The simulations are typi-
cally done for the restriction parametdis=1 and 2[19].

The timet corresponds to the number of Monte Carlo steps
(number of layers To determine the growth exponeff we
measureW(t) as a function of time for a system size
L=10000, averaging over 60 independent runs in
d=1+1. Through the relationV(t)~t? for early times
t<L? we obtain
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FIG. 2. Saturated surface widW as a function oL in log-log
plot for bothN=1 and 2.
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FIG. 3. G(1t) as a function of time in semilog plot for both FIG. 4. Measured probability di_stributioﬂi@(l)’s] of hopping
N=1and 2 d=1+1). distances|( in the steady-state regime fbr=1 and 2, and for the
system size& =128, 256, and 512. The solid curve is an exponen-
~0.95/0.322.97 in d=1+1. These exponents of our Klalgt[;céed;a(gﬁm=1 and the dotted curve is such a fit for
model are in very good agreement wigh=3%, a=1, and

z= 3 obtained analytically from Eq2) in Ref.[7]. They also  satisfies the RSOSC If the dropped site satisfies the

satisfy the scaling relatior(s,8,16 RSOSC, the particle does not move witk0. We have
measuredP(l) for the restriction parameted=1 and 2. By
z-2a—-d+1=0, (6)  monitoring the hopping distances of three million dropped
particles at the steady-state regime for the system sizes
zta=4 (7)  L=128, 256, and 512 over 30 independent runs, we have

) . . obtainedP(l)’s, which is shown in Fig. 4. The data for both
very well. The scaling relation of Ed6) is due to the con-  N=1 and 2 are well fitted to exponential distributions as
servation of the number of particles after being dropf&d

Another interesting quantity is the correlation function P(l)=Aexp —1/1,),
G(r,t)={(h(x+r,t)—h(x,1))?. As explained in Refs.

[20,21,23, if a>1, G(1t) grows ast” for small t with (A=1.23, 1,=0.90 forN=1
y=2(a—1)/zind=1+1. In our model,y is expected to be

zero so thatG(1t) grows as lhin d=1+1. We have con- A=1.69, |,=0.62 forN=2) (8)

firmed numerically that the plot d&(1t) versus It shows a

straight line for bothN=1 and 2 as shown in Fig. 3. All except the points of=0. We have also calculated average
these results involving surface width and correlation functiorhopping distanc€l)==,IP(l) and obtained|)=0.91 for
support our assertion that our model belongs to the samid=1 and(l)=0.56 for N=2. The average hopping dis-

universality class as Eq2). tances for the system sizes=128, 256, and 512 are almost
the same for the giveN. We find thatP(l)’s follow expo-
lIl. DISTRIBUTION OF HOPPING DISTANCES nential distributions regardless of the valuesNofwhereas

the average hopping distance decreasedl dascreases. In
There exist some other conserved growth mof®8,13  principle, it is possible for a particle to have a very long
as well. Wolf and Villain(WV) model[8] and Das Sarma hopping distance, but such an event happens with very rare
and Tamborene¢DT) model[9] allow a dropped particle to probability, as you can see in Fig. 4. Since measured
hop to maximum bond sites. In DT and WV models, therep(|)’s for various system sizes satisfy an exponential decay
exists a finite vertical diffusion due to possible high stepsquite well, the distributions do not have a long-ranged tail
Similarly in our model, there may be a long distance hoppingyhich can be seen in a power-law distribution. We conclude

of a dropped particle to find a site where the RSOSC ighat the basic growth process in the conserved RSOS growth
satisfied. If the chance for a particle to hop in a long distancgnodel is a local process.

(or in a distance comparable to the size of a substriate
high, then our model should have nonlocal processes. So, we
measure the probability distributio®(l) as a function of
wherel is the hopping distance between the dropped(tiie The WV model[8] allows only downward jumps, so that
selected siteand the deposited sit¢ghe nearest site which the surface current probably producing nonzero diffusion

IV. SURFACE CURRENT
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FIG. 5. Surface currentd(m) in the steady-state regime for //\M\V

N=1 and 2, wheren is the slope of the substrate. W

characteristics of the Edwards and Wilkins@EW) model
[18]. The diffusion term generates the on average downward
movement of the dropped particles. If a surface growth
model has a characteristic of the diffusion, then the corre-
sponding continuum equation can be described by

X
Jh(x,t)
at

— 2
=vVoh(x,1) FIG. 6. (a) Typical surface configurations in the steady-state

regime in one simulation for the system size- 256 and(b) those
+[other h(x,t) dependenttermis- 5. (9) in another simulation. The numbers in the top of the figures denote

the Monte Carlo times at which each surface configuration is taken.
The configurations of the earlier times come nearer to the bottom of

Recently Krug, Plischke, and Sieg¢®?] have suggested a the figures.

method to determine the surface diffusion coefficientin

various growth models by measuring the surface current V. SURFACE MORPHOLOGY

J(m) as a function ofm, which is the average slope of the AT THE STEADY-STATE REGIME

tilted substrate. The surface current is measured by counting 14 understand the relation of our model to E2) more

the number of jumps in between the uphill and downhill yeeply, we have investigated the surface morphologies of the
directions. If a net current is in uphill directiod(m) is  conserved growth model with the RSOSC in the steady-state
positive. v, can be givenw,=—(3J/dm)(m=0). The tilt-  regime. Figures @ and Gb) have some typical surface con-
dependent current analydi22] shows that the WV model figurations of our model at the steady-state regime for the
belongs to the EW18] universality clasg23]. If there is a  system sizel =256. The surface patterns in Fig(a are
very small negative current, the crossover behavior to EWaken fort between 10 and 1.5< 10° in one simulation, and
class will be very slow. Since a dropped particle is allowedithose in Fig. @) are taken fort between 610° and

to hop equally in both up and down directions in our model,7x 10° in another simulation. From both Figstah and &b)

we expect there is no surface diffusion term. To show thiSone can infer that the grooved phases of growing surfaces
explicitly, we measure the surface currdfin) as a function  occur frequently and disappear at the steady-state regime.
of the surface tilt parametem. We do not consider the Such grooved phases last for a considerable time interval,
length of the jump; instead, we just count the number of thenefore rather flat patterns are formed. In contrast, for the
particles which hop to downhilfor uphill) jump. The cur-  simple RSOS growth model the surfaces behaves like a ran-
rents are taken in the steady-state regime for the system Siﬁ%m walk ind=1+1, producinga=1 . The grooved phases

L=512 and for the restriction parametb=1 and 2. As characterized by the rougheness exponentl appears to

shown in Fig. 5, theJ(m) is very small(or less than 10%) T " s
and is almost independent of for bothN=1 and 2. Thus ?Ze) t[rieﬂ.oletermlnlstnﬁnome freg steady-state solution of Eq.

the diffusion coefficien,= —J'(0) is nearly equal to zero.
Therefore we hardly expect that there is a crossover to the
EW class in our model. h(x)=hg+cqIn[cosHca(X—X,) }H, (10
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Since the dropped particle on a sloped region hops to flat
area, surface current is generated from the higher sloped re-
gion to the lower sloped region. Thus we can argue that our
model has a positive in Eqg.(2) [13]. This is the reason why

the conserved growth with a RSOSC produces the nonlinear

effect. It is interesting that the nonconserved RSOS growth
model[3] generates the KPZ nonlinearity, and the conserved
growth model with RSOSC produces the conserved nonlin-

earity in Eq.(11). The sign of\ is irrelevant, so it might be
interesting to construct a model having a negatvevhich
belongs to the same universality class. There is a different
model [11] having a similar value of exponerg, where
Arrhenius hopping is allowed in SOS model. Since a kink
site is more favorable than a single bond site in the model, it
may have negativa [13]. The different signs ok between

our model and Ref[11] is probably due to the different

physical origin[24]. In our model, it is hard to stick to the
vicinal surface. However, a kink site is more favorable in
other model. It is not exactly known whether the mojdel]
follows Eq.(2) or not. The similar behavior in KPZ equation
is also shown in the finite temperature RSOS growth model,
el Wb e Sl e of where the KPZ nonlinearity depends on a temperaturelike
parametef24]. In realistic growth, the dropped particle may
hop quite a long distance at high temperature to prevent a
high step, and then the surface configuration in real crystal
growth may satisfy the RSOS condition.
In conclusion, we have introduced a simple conserved
. . growth model with the RSOS condition which follows the

(D) 6411807, 6485484, 6679272, 6766314, 6797512, 6801590, 6866444

M’W

h (Arb. units)

X nonlinear equatiorf2). The numerical study of the models
shows that dynamical exponenfsr scaling property the
FIG. 6 (Continued. morphology of the surfaces at the steady-state regime, and

the property of hoppings are in good agreement with the
Wherex(), hO! Cli andc2 are constants. Through numerical theoretical reSUItS of the Continuum equation. The measure-

fits, we have confirmed that the grooved phases in Figs. 6 ment of the tilt dependent surface current supports that the
and b) are consistent with Eq10). Racz et al[17] also  EW-type diffusion term is absent in the model. The con-
found such grooved phases in the critical and decisive analyserved growth with the RSOS condition effectively produces
sis of the Sun, Guo and Grant[SG:l noise-conserved sto- the conserved nonlinear term in E@) The-relation be-
chastic model. The grooved phase in our model has a shafyeen the MBE growth and our model remains to be under-
peak and a round valley. The surface configurations also restood.
flect the brokerh— —h symmetry of Eq.(2). The analysis
for the steady-state surfaces based on Fig. 6 also provide an
identification that our model follows E@2).
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