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Surface morphology, hopping, and current in a conserved growth model
with a restricted solid-on-solid condition
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A conserved growth model with a restricted solid-on-solid~RSOS! condition is described. A randomly
dropped particle is allowed to hop to the nearest site satisfying the RSOS condition. The values of the dynamic
exponents in the conserved growth model are consistent with those of the nonlinear equation
]h/]t52n¹4h1l¹2(¹h)21h, whereh is a random noise. The surface current measurement shows the
absence of the Edwards-Wilkinson-type diffusion term. The surfaces in the steady-state regime have a grooved
phase characterized by the roughness exponenta51. The physical origin of the conserved nonlinear term is
also discussed.@S1063-651X~97!15903-7#

PACS number~s!: 05.40.1j; 82.20.Mj
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I. INTRODUCTION

There have been considerable efforts in the study of v
ous growth models@1#. Since the surface structures of ma
growth processes are self-affine, most studies have con
trated on the surface widthW, which is defined as the roo
mean square fluctuation of the surface height. In a finite s
tem of lateral sizeL, the widthW starting from a flat sub-
strate scales as@1#

W~ t !;La f ~ t/Lz!

;tb, t!Lz

;La, t@Lz,

~1!

where the scaling functionf (x) is xb for x!1 and constant
for x@1. The exponentsb and z are connected with the
relationz5a/b. Among them, the class of models known
solid-on-solid~SOS! models have been extensively studi
as simple models of both equilibrium and nonequilibriu
properties of surfaces. The characteristic feature of S
models is the restriction of fluctuations to exclude overha
and lattice vacancies. An important variation among the S
models is the restricted SOS~RSOS! model, in which the
differences between neighboring heights of the local c
umns udhu are usually restricted to zero or unity in magn
tude. Even with this restriction, the equilibrium RSOS mod
still exhibits a roughening transition at three dimensions@2#.
The nonequilibrium growth model with the RSOS conditi
@3# is also well described by the Kardar-Parisi-Zhang~KPZ!
equation@4–6#.

Recently, there have been some studies in ‘‘conser
growth models’’ @7–16# to find the possible relevance o
these models to the real molecular beam epitaxial~MBE!
growth. In these models the number of particles is conser
after being deposited, whereas the number of particles is
conserved in the simple RSOS growth model@3#. One of the

*Electronic address: ykim@nms.kyunghee.ac.kr
551063-651X/97/55~4!/3977~6!/$10.00
i-

n-

s-

S
s
S

l-

l

d

d
ot

major issues in the studies is to find the universality class
various atomistic growth~or MBE! processes. It has bee
suggested@8,9# that some atomistic models for MBE growt
may belong to the conserved KPZ universality class@7,8,16#,
which is different from the KPZ class@4#. Even though there
are some recent experimental evidences@14# supporting this
claim, the issue is still quite controversial. It would, ther
fore, be helpful if one can construct alternate models wh
belong to the conserved KPZ class. The so-called ‘‘co
served growth models’’ have the distinguished feature t
the dropped particle is allowed to hop along the surface w
out desorption. So far, there is no firm understanding
tween discrete growth models and a nonlinear conser
continuum equation@7,8,13#.

Here, we study a conserved growth model with the RS
condition @15# in detail. We find that our model follows a
nonlinear MBE growth equation of Lai and Das Sarma@7#
and Villain @10#,

]h~x,t !

]t
52n4¹

4h~x,t !1l¹2~¹h!21h~x,t !, ~2!

whereh(x,t) is the height of the film andh is a noncon-
servedGaussian random noise satisfying

^h~x,t !h~x8,t8!&52Dd~x2x8!d~ t2t8!. ~3!

The one-loop renormalization group~RG! calculation@7# for
Eq. ~2! gives a5(52d)/3 and z5(71d)/3, i.e.,
b5(52d)/(71d). In d5111, b51/3 is the same as th
value of KPZ exponent, butz53 is different from
zKPZ53/2. Sun, Guo, and Grant@16# studied Eq.~2! with
conserved noiseby one-loop RG calculation and found di
ferent valuesb51/11 andz511/3 in d5111. Raczet al.
@17# studied various atomistic models withconserved noise
and related some of their discrete models to Eq.~2! with
conserved noise. There have been some physical explanat
for the nonlinear term@10#.

To claim that our conserved model follows Eq.~2! ex-
actly, we investigate the scaling property~or the values of
the exponents!, the hopping distance of particles along th
3977 © 1997 The American Physical Society
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surface, the surface current, and the morphology of the
face in the steady-state regime. Our study is done mainl
d5111. The outline of this paper is as follows. In Sec.
our model is described in detail, and the scaling propertie
the surface width in the model are given. Then the hopp
distances of particles along the surface are discussed in
III. Section IV contains the tilt-dependent surface curre
measurements. In Sec.V, the morphologies of the stea
state surfaces are studied. Finally in Sec. VI, discussions
conclusions are given.

II. UNIVERSALITY CLASS
OF THE CONSERVED RSOS MODEL

We now describe a conserved growth model with
RSOS condition. The growth algorithm of the model is ve
similar to the simple RSOS growth model@3# except no de-
sorption. The growth rule is following:~i! A sitexW is selected
randomly on (d21)-dimensional substrate.~ii ! If the re-
stricted solid on solid condition~RSOSC! on the neighboring
heightsudhu50,1, . . . ,N is obeyed after a particle is depo
ited atxW , whereN is a preassigned restriction parameter, th
a growth is permitted by increasing the heig
h(xW )→h(xW )11. ~iii ! If the RSOSC is not obeyed at the p
sition xW , the dropped particle is allowed to hop to the near
site toxW where the RSOSC is satisfied. If there are more th
one neighboring site at the same distance fromxW which sat-
isfies the RSOS condition, one of them is chosen rando
with equal probability.

In the simple RSOS growth model@3#, a site on a
d21-dimensional substrate is randomly selected, and
growth is permitted on the selected site provided the nea
neighbor height difference is not larger than the restrict
parameterN. If the RSOSC is not satisfied, then the dropp
particle is rejected. However, our model allows the dropp
particle to hop to the nearest site where the RSOSC is s
fied. So our model is rejection free, and our model faithfu
produces a RSOS model with the constraint of conser
particle growth. To find a site satisfying RSOSC, t
dropped particle can hop both up and down directions al
the surface. The simple RSOS growth model@3# allows a
desorption of the dropped particles, and produces the K
nonlinear term @4#. In our conserved model, since th
dropped particle is allowed to hop both in the up and do
directions, there is no surface diffusion term of Edwards a
Wilkinson model@18#. ~In Sec. IV we show it by measuring
the tilt-dependent surface current.! Instead, there may be
conserved nonlinear term due to the RSOS restriction.

The universality class of a growth model is determined
the values of the dynamic exponentsa and b ~or z). Our
simulations are performed ind5111 from a flat substrate
with periodic boundary conditions. The simulations are ty
cally done for the restriction parametersN51 and 2@19#.
The timet corresponds to the number of Monte Carlo ste
~number of layers!. To determine the growth exponentb, we
measureW(t) as a function of time for a system siz
L510 000, averaging over 60 independent runs
d5111. Through the relationW(t);tb for early times
t!Lz, we obtain
r-
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b50.3260.01 ~d5111!. ~4!

As shown in Fig. 1 the value ofb remains the same within
the error for bothN51 and 2. For the roughness expone
a describing the saturation of the interface fluctuation,
use the relationW(t);La for the system sizeL in the
steady-state regimet@Lz. We have used system size
L564, 90, 128, 180, and 256. From the data shown in Fig
we obtain

a50.9560.04 ~d5111!. ~5!

The value ofa also remains the same within the error f
both N51 and 2. Through the relationz5a/b, we obtain

FIG. 1. Surface widthW as a function of time in log-log plot for
bothN51 and 2 (L510 000 andd5111).

FIG. 2. Saturated surface widthW as a function ofL in log-log
plot for bothN51 and 2.
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'0.95/0.32'2.97 in d5111. These exponents of ou

model are in very good agreement withb5 1
3 , a51, and

z53 obtained analytically from Eq.~2! in Ref. @7#. They also
satisfy the scaling relations@7,8,16#

z22a2d1150, ~6!

z1a54 ~7!

very well. The scaling relation of Eq.~6! is due to the con-
servation of the number of particles after being dropped@8#.
Another interesting quantity is the correlation functio
G(r ,t)5^„h(x1r ,t)2h(x,t)…2&. As explained in Refs.
@20,21,23#, if a.1, G(1,t) grows astg for small t with
g52(a21)/z in d5111. In our model,g is expected to be
zero so thatG(1,t) grows as lnt in d5111. We have con-
firmed numerically that the plot ofG(1,t) versus lnt shows a
straight line for bothN51 and 2 as shown in Fig. 3. Al
these results involving surface width and correlation funct
support our assertion that our model belongs to the s
universality class as Eq.~2!.

III. DISTRIBUTION OF HOPPING DISTANCES

There exist some other conserved growth models@8,9,13#
as well. Wolf and Villain~WV! model @8# and Das Sarma
and Tamborenea~DT! model@9# allow a dropped particle to
hop to maximum bond sites. In DT and WV models, the
exists a finite vertical diffusion due to possible high ste
Similarly in our model, there may be a long distance hopp
of a dropped particle to find a site where the RSOSC
satisfied. If the chance for a particle to hop in a long dista
~or in a distance comparable to the size of a substrate! is
high, then our model should have nonlocal processes. So
measure the probability distributionP( l ) as a function ofl
wherel is the hopping distance between the dropped site~the
selected site! and the deposited site~the nearest site which

FIG. 3. G(1,t) as a function of time in semilog plot for bot
N51 and 2 (d5111).
n
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satisfies the RSOSC!. If the dropped site satisfies th
RSOSC, the particle does not move withl50. We have
measuredP( l ) for the restriction parametersN51 and 2. By
monitoring the hopping distances of three million dropp
particles at the steady-state regime for the system s
L5128, 256, and 512 over 30 independent runs, we h
obtainedP( l )’s, which is shown in Fig. 4. The data for bot
N51 and 2 are well fitted to exponential distributions as

P~ l !5Aexp~2 l / l r !,

~A51.23, l r50.90 for N51

A51.69, l r50.62 for N52) ~8!

except the points ofl50. We have also calculated averag
hopping distancê l &5( l lP( l ) and obtained̂ l &50.91 for
N51 and ^ l &50.56 for N52. The average hopping dis
tances for the system sizesL5128, 256, and 512 are almos
the same for the givenN. We find thatP( l )’s follow expo-
nential distributions regardless of the values ofN, whereas
the average hopping distance decreases asN increases. In
principle, it is possible for a particle to have a very lon
hopping distance, but such an event happens with very
probability, as you can see in Fig. 4. Since measu
P( l )’s for various system sizes satisfy an exponential de
quite well, the distributions do not have a long-ranged t
which can be seen in a power-law distribution. We conclu
that the basic growth process in the conserved RSOS gro
model is a local process.

IV. SURFACE CURRENT

The WV model@8# allows only downward jumps, so tha
the surface current probably producing nonzero diffus

FIG. 4. Measured probability distributions@P( l )’s# of hopping
distances (l ) in the steady-state regime forN51 and 2, and for the
system sizesL5128, 256, and 512. The solid curve is an expone
tial fit to data for N51 and the dotted curve is such a fit fo
N52 @see Eq.~8!#.
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3980 55YUP KIM AND JIN-MIN KIM
characteristics of the Edwards and Wilkinson~EW! model
@18#. The diffusion term generates the on average downw
movement of the dropped particles. If a surface grow
model has a characteristic of the diffusion, then the co
sponding continuum equation can be described by

]h~x,t !

]t
5n2¹

2h~x,t !

1@other h~x,t ! dependent terms#1h. ~9!

Recently Krug, Plischke, and Siegert@22# have suggested
method to determine the surface diffusion coefficientn2 in
various growth models by measuring the surface curr
J(m) as a function ofm, which is the average slope of th
tilted substrate. The surface current is measured by coun
the number of jumps in between the uphill and downh
directions. If a net current is in uphill direction,J(m) is
positive. n2 can be givenn252(]J/]m)(m50). The tilt-
dependent current analysis@22# shows that the WV mode
belongs to the EW@18# universality class@23#. If there is a
very small negative current, the crossover behavior to E
class will be very slow. Since a dropped particle is allow
to hop equally in both up and down directions in our mod
we expect there is no surface diffusion term. To show t
explicitly, we measure the surface currentJ(m) as a function
of the surface tilt parameterm. We do not consider the
length of the jump; instead, we just count the number of
particles which hop to downhill~or uphill! jump. The cur-
rents are taken in the steady-state regime for the system
L5512 and for the restriction parameterN51 and 2. As
shown in Fig. 5, theJ(m) is very small~or less than 1024)
and is almost independent ofm for bothN51 and 2. Thus
the diffusion coefficientn252J8(0) is nearly equal to zero
Therefore we hardly expect that there is a crossover to
EW class in our model.

FIG. 5. Surface currentsJ(m) in the steady-state regime fo
N51 and 2, wherem is the slope of the substrate.
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V. SURFACE MORPHOLOGY
AT THE STEADY-STATE REGIME

To understand the relation of our model to Eq.~2! more
deeply, we have investigated the surface morphologies of
conserved growth model with the RSOSC in the steady-s
regime. Figures 6~a! and 6~b! have some typical surface con
figurations of our model at the steady-state regime for
system sizeL5256. The surface patterns in Fig. 6~a! are
taken fort between 106 and 1.53106 in one simulation, and
those in Fig. 6~b! are taken fort between 63106 and
73106 in another simulation. From both Figs. 6~a! and 6~b!
one can infer that the grooved phases of growing surfa
occur frequently and disappear at the steady-state reg
Such grooved phases last for a considerable time inter
before rather flat patterns are formed. In contrast, for
simple RSOS growth model the surfaces behaves like a

dom walk ind5111, producinga5 1
2 . The grooved phase

characterized by the rougheness exponenta51 appears to
be the deterministic~noise-free! steady-state solution of Eq
~2! @17#:

h~x!5h01c1ln@cosh$c2~x2xo!%#, ~10!

FIG. 6. ~a! Typical surface configurations in the steady-sta
regime in one simulation for the system sizeL5256 and~b! those
in another simulation. The numbers in the top of the figures den
the Monte Carlo times at which each surface configuration is tak
The configurations of the earlier times come nearer to the bottom
the figures.
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55 3981SURFACE MORPHOLOGY, HOPPING, AND CURRENT IN . . .
wherexo , ho , c1, andc2 are constants. Through numeric
fits, we have confirmed that the grooved phases in Figs.~a!
and 6~b! are consistent with Eq.~10!. Racz et al.@17# also
found such grooved phases in the critical and decisive an
sis of the Sun, Guo and Grant’s@16# noise-conserved sto
chastic model. The grooved phase in our model has a s
peak and a round valley. The surface configurations also
flect the brokenh→2h symmetry of Eq.~2!. The analysis
for the steady-state surfaces based on Fig. 6 also provid
identification that our model follows Eq.~2!.

VI. DISCUSSIONS AND CONCLUSIONS

We can rewrite Eq.~2! as]h/]t52¹•J1h with the sur-
face currentJ,

J5¹@n¹2h2l~¹h!2#. ~11!

FIG. 6 ~Continued!.
d
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Since the dropped particle on a sloped region hops to
area, surface current is generated from the higher sloped
gion to the lower sloped region. Thus we can argue that
model has a positivel in Eq. ~2! @13#. This is the reason why
the conserved growth with a RSOSC produces the nonlin
effect. It is interesting that the nonconserved RSOS gro
model@3# generates the KPZ nonlinearity, and the conserv
growth model with RSOSC produces the conserved non
earity in Eq.~11!. The sign ofl is irrelevant, so it might be
interesting to construct a model having a negativel which
belongs to the same universality class. There is a differ
model @11# having a similar value of exponentb, where
Arrhenius hopping is allowed in SOS model. Since a ki
site is more favorable than a single bond site in the mode
may have negativel @13#. The different signs ofl between
our model and Ref.@11# is probably due to the differen
physical origin@24#. In our model, it is hard to stick to the
vicinal surface. However, a kink site is more favorable
other model. It is not exactly known whether the model@11#
follows Eq.~2! or not. The similar behavior in KPZ equatio
is also shown in the finite temperature RSOS growth mod
where the KPZ nonlinearity depends on a temperature
parameter@24#. In realistic growth, the dropped particle ma
hop quite a long distance at high temperature to preve
high step, and then the surface configuration in real cry
growth may satisfy the RSOS condition.

In conclusion, we have introduced a simple conserv
growth model with the RSOS condition which follows th
nonlinear equation~2!. The numerical study of the model
shows that dynamical exponents~or scaling property!, the
morphology of the surfaces at the steady-state regime,
the property of hoppings are in good agreement with
theoretical results of the continuum equation. The meas
ment of the tilt dependent surface current supports that
EW-type diffusion term is absent in the model. The co
served growth with the RSOS condition effectively produc
the conserved nonlinear term in Eq.~2!. The relation be-
tween the MBE growth and our model remains to be und
stood.
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